Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 7, 2025
-
Abstract Aerosols are important environmental factors that can influence deep convective clouds (DCCs) by serving as cloud condensation nuclei. Due to complications in DCC dynamics and microphysics, and aerosol size distribution and composition, understanding aerosol‐DCC interactions has been a daunting challenge. Recently, the convective invigoration mechanisms through enhancing latent heating in condensation and ice‐related processes that have been proposed in literature are debated for their significance qualitatively and quantitatively. A salient issue arising from these debates is the imperative need to clarify essential knowledge and methodologies in investigating aerosol impacts on deep convection. Here we have presented our view of key aspects on investigating and understanding these invigoration mechanisms as well as the aerosol and meteorological conditions under which these mechanisms may be significant based on new findings. For example, the condensational invigoration is most significant under a clean condition with an introduction of a large number of ultrafine particles, and the freezing‐induced invigoration can be significant in a clean condition with a large number of relatively large‐size particles being added. We have made practical recommendations on approaches for investigating aerosol impacts on convection with both modeling and observations. We note that the feedback induced by the invigoration via the enhanced latent heating to circulation and meteorology can be an important part of aerosol impacts but is very complicated and varies with different convective storm types. This is an important future direction for studying aerosol‐DCC interactions.more » « less
An official website of the United States government

Full Text Available